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Abstract

We describe a strategy for random number generation that efficiently supports per-
particle-state for Monte Carlo transport applications. Unlike prior random number
generation strategies, where the design goal of a countable number of independent full
period sequences matches a per-cpu random number state well, we provide an uncount-
able number of statistically independent short sequences that match the typical lifetime
of a Monte Carlo particle well. The short sequences are selected from a single random
number stream of suitable quality and period, using a cryptographic hash function to
select random starting positions. The random number generators described herein are
stateless. The random number state is carried along with the particle. The stateless de-
sign removes the read-modify-write hazard associated with traditional random number
generators in shared memory parallel environments, and helps support deterministic be-
havior when a particle is moved from one processor to another in a distributed memory
application. Our library is implemented in the C programming language. A Fortran
interface to the library is provided.

∗Work performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore
National Laboratory under contract No. W-7405-ENG-48.
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1 Introduction

Monte Carlo algorithms have been heavily used in transport applications since the earliest
days of electronic computing. In spite of this very long history, little has changed in how
random number generators are used in these applications. Random numbers have typically
been generated with a linear congruential recurrence formula of the form

x[n] = a x[n− 1] + b (mod m) , (1)

where x is the hidden random number state stored in statically allocated memory. The
constants a and b are chosen to produce a maximal period and good randomness properties.
The modulus of the arithmetic, m, is typically chosen to be a power-of-two in order to
minimize the cost of performing modular arithmetic using binary operations on a computer.
The code developer is usually provided with routines that allow one to save and restore the
internal state x of the generator. These routines are used for job check pointing purposes
and can also be used to set the starting state for a statistically independent instance of the
program run.

The increasing popularity of shared memory parallel computing has exposed a hazard in
the traditional approach when the internal state, x, is shared among the threads or proces-
sors executing the application. The internal state can be protected with a lock, removing
the read/modify/write hazard, but such an arrangement still results in non-deterministic
(but correct) behavior because the processors can access the random number generator in
any order influenced by machine time sharing effects. One must localize the internal random
number state, on a per-thread or per-processor basis, in order to remove this hazard. The
coding required to localize memory in this manner is specific to a given parallel programming
environment, leading to a multiplicity of random number library implementations (possibly
on a given shared memory multiprocessor) and the attendant risk of loading against the
wrong one.

Further complications arise in a distributed memory programming environment where
the number of processors employed can be large. The straight forward extension of the per-
thread or per-processor approach has led to the development of random number generators
with parameterized constants that provide independent full period sequences [1], assuring
the independence of random numbers generated in each processor. Although this solution
provides independent generators for each processor, it can lead to problems with determin-
ism when a particle must be moved between processors for load balancing purposes. When
the particle is moved, it encounters a different random number stream and its history is
changed as a result. More significantly, its presence affects the history of all of the particles
being processed by the processor that it is moved to, leading to undesired avalanche effects
in application behavior.

In the RNG library described in this paper, we take an alternative approach of efficiently
supporting a per-particle random number state. The random number generator library is
stateless, leading to a single implementation for serial, shared memory parallel, and dis-
tributed memory applications. The user may use the library to implement a single random
number state, a per-processor or per-thread random number state for parallel applications,
or a per-particle random number state in the limit of fine granularity. A pointer to the
desired random number state is supplied as an argument to the random number routines
provided in the library.
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2 Design Requirements

In order to support per-particle state in Monte Carlo transport calculations the size of the
state must be relatively small in comparison to the amount of storage normally associated
with a particle. A Monte Carlo particle might have an energy or velocity, three position co-
ordinates, and three direction coordinates associated with it, in addition to a few parameters
which indicate the type of particle that is being represented. To prevent application storage
from being dominated by random number state, the size of the state must be small when
compared to perhaps a dozen words of memory. This precludes using lagged-Fibonacci [2]
generators that require many tens to hundreds of words of memory even though this class
of random number generators can produce sequences of very high quality.

Although the random number strategy we have implemented can be extended to any
generator that is suitably bit efficient, all of the generators that we have implemented are
linear congruential generators for which the state fits in a single 64-bit word. This meets
the requirement of being small compared to the amount of storage normally associated with
a Monte Carlo particle. We offer carefully chosen prime moduli to resolve patterns that
appear in the linear congruential generators that are commonly used.

If we are to provide for an uncountable number of statistically independent random
number states using a single random number stream of demonstrated quality, we need a
mechanism to efficiently select random starting positions on the random number stream.
A different linear congruential generator can be used for this purpose [3], but this provides
insufficient de-correlation between the resulting random number seed states for individual
particles. In the RNG library we use a cryptographic hash function to generate statistically
independent random number states. The hash function can be used to construct a sequence
of uncorrelated random number states by passing an ordinal sequence through it. The hash
function may also be used to spawn a new random number state from a parent, with the
position, in the random number sequence, of the child’s state being uncorrelated to the
position of the parent’s state.

3 Random Number Generators

The RNG library provides a family of linear congruential generators of the form

x[n] = a x[n− 1] + b (mod m) , (2)

wherein the random number state fits in a 64-bit unsigned word. The multiplier, a, the
addend, b, and the modulus, m, are chosen to provide a variety of high quality generators
for the code developer to employ. Two power-of-two modulo generators, a Mersenne prime
modulo generator, and several other prime modulo generators are provided. Generators
using a modulus that is a power of two are the fastest, but suffer from a hierarchy of patterns
[4] in the low order bits that may pose a problem for some applications. Generators using a
prime modulus do not suffer from the hierarchy of patterns noted for a power of two modulus,
with the choice of Mersenne primes [4] being particularly efficient. Patterns of a different
form have been discovered for Mersenne primes [5], however. Primes of a slightly more
complicated construction remove this defect while not being significantly more expensive
for modular arithmetic.

The prime modulus generators provided in the RNG library have the useful feature
that the value zero does not occur as a valid random number state. By carefully zeroing a
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random number state when it is copied or retired, the random number generator routines
will trap on the invalid value should the retired random number state be recycled. This has
proven to be very useful when debugging applications that implement per-particle random
number state.

The interface routines for the random number generators in the RNG library take the
general form:

Rng Type RngXSeed( Rng UInt32 i, Rng UInt32 j );
Rng Type RngXSpawn( Rng Type *x );
int iRngX( Rng Type *x );
double dRngX( Rng Type *x );
float fRngX( Rng Type *x );

where X is replaced with a token that indicates the type of linear congruential recurrence
relation being used for the random number generator.

The RngXSeed() function creates a randomly selected state by passing the two integer
arguments through the cryptographic hash function. The resulting random number state
is returned. Rng Type, Rng UInt32 and the function declarations are defined in the header
file rng.h. The routine RngXSpawn() takes an existing RNG state, called the parent, and
advances it. A copy of the advanced parent state is then hashed to produce an uncorrelated
child RNG state that is returned. As an example of the use of RngXSpawn(), consider
the case where a “parent particle”, parent, spawns three “child particles”, child[3]. The
particles are represented by a struct that has a Rng Type member named rng. Then,
the following lines of code demonstrate the seeding of the children’s RNG states using the
parent’s RNG state.

for( i = 0; i < 3; i++ ) {
child[i].rng = RngXSpawn( &(parent.rng) );

}
Note that parent.rng is advanced three times in this example. Finally, note that both
RngXSeed() and RngXSpawn() take 64-bits values, RngXSeed() in the form of two 32-
bit unsigned integers, and hash them through the same hashing algorithm described in
Section 4.

The last three functions step the random number state and return uniformly distributed
numbers in integer and floating point formats. The function iRngX() returns a 31-bit
integer in the range [0, 231). The function dRngX() returns a double precision floating
point value in the range [0,1). The function fRngX() returns a single precision floating
point value in the range [0,1). If one casts the value returned by dRngX() to a float, it is
possible for the value 1.0 to occur due to rounding.

3.1 64-bit Linear Congruential Generator

This algorithm is the fastest, especially on 64-bit architectures, but does not produce as
good a pseudo random number sequence as the prime modulus generators. The next value
for the random number state, x[n], is determined from the current value, x[n− 1], by

x[n] = a x[n− 1] + b (mod 264) . (3)

The values of the multiplier, a = 2862933555777941757, and the addend, b = 3037000493,
are hardwired into the implementation and are known to produce a good random number
list. The period of this random number generator is 264 ≈ 1.8× 1019. This generator is the
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same as the default one-stream SPRNG [1] lcg64 generator and has been checked to insure
that it satisfies the requirements for maximal period1.

The interface routines for this generator are:

Rng Type Rng64Seed( Rng UInt32 i, Rng UInt32 j );
Rng Type Rng64Spawn( Rng Type *x );
int iRng64( Rng Type *x );
double dRng64( Rng Type *x );
float fRng64( Rng Type *x );

This generator is the fastest, particularly on 64 bit computer platforms. It is useful for
performance sensitive applications that are insensitive to the pattern content present in the
low order bits. As zero is an allowed random number state, this generator is not useful for
debugging correct state retirement in a per-particle state implementation.

3.2 48-bit Linear Congruential Generator

This generator is the same as the default one-stream SPRNG 48-bit lcg. This generator
suffers from the same patterns in the low order bits as the 64-bit generator, but these
patterns become more significant because of the smaller width of the random number state.
Like the 64-bit generator, this generator is fast. The next value for the random number
state, x[n], is determined from the current value, x[n− 1], by

x[n] = a x[n− 1] + b (mod 248) . (4)

The values of the multiplier, a = 44485709377909, and the addend, b = 11863279, are
hardwired into the implementation and are known to produce a good random number list.
The period of this random number generator is 248 ≈ 2.8× 1014.

The interface routines for this generator are:

Rng Type Rng48Seed( Rng UInt32 i, Rng UInt32 j );
Rng Type Rng48Spawn( Rng Type *x );
int iRng48( Rng Type *x );
double dRng48( Rng Type *x );
float fRng48( Rng Type *x );

Our advice is to only use this generator to check application sensitivity to the quality of
the random number stream.

3.3 48-bit CRI Linear Congruential Generator

This algorithm is provided by the operating system on computers manufactured by Cray
Research Incorporated (CRI), and as such it has been heavily used at computer centers
employing CRI hardware. We provide it in order to support comparison with the other
random number generators provided in the RNG library. This generator suffers from the
same patterns in the low order bits as the 64-bit generator, but these patterns become more
significant because of the smaller width of the random number state. The next value for
the random number state, x[n], is determined from the current value, x[n− 1], by

x[n] = a x[n− 1] (mod 248) . (5)
1D.E. Knuth, The Art of Computer Programming, vol. 2, page 16-21, (1998).
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The value of the multiplier, a = 44485709377909, is hardwired into the implementation and
is known to produce a good random number list (note that lcg48 and lcgCRI have the same
multiplier). Both the multiplier, and the random number state are odd. The period of this
random number generator is 246 ≈ 7.0×1013 per stream. The generator actually creates two
independent streams based on the value of the ”twos” bit in the random number state that
is preserved by the recurrence relation. The hash functions associated with this generator
set the ”twos” bit randomly, taking full advantage of the pair of random number streams
produced by the recurrence relation. The value zero does not occur for this random number
generator.

The interface routines for this generator are:

Rng Type RngCRISeed( Rng UInt32 i, Rng UInt32 j );
Rng Type RngCRISpawn( Rng Type *x );
int iRngCRI( Rng Type *x );
double dRngCRI( Rng Type *x );
float fRngCRI( Rng Type *x );

The pattern content of this generator is frightening, making it somewhat amazing that
it has been successfully used for so many years. Because this generator duplicates the
arithmetic of a commonly used random number generator, and a zeroed state is trapped, it
can be useful during the debugging stage of program transformation to a per-particle state
approach. Past its utility for debugging purposes, our advice is to only use this generator
to check application sensitivity to the quality of the random number stream.

3.4 61-bit Prime Modulus Linear Congruential Generator

This algorithm is slower than the generators using a power of two modulus, but produces a
random number sequence free of short period patterns in the low order bits. A pattern does
occur for this generator, however, and is described in [5]. The next value for the random
state x[n] is determined from the current value x[n− 1] by:

x[n] = a x[n− 1] (mod p) (6)

Where the multiplier, a = 437799614237992725, is hardwired into the algorithm and p is a
Mersenne prime; that is, a prime that is of the form p = 2m − 1 where m is also a prime.
For this generator m = 61, which is the largest value of m less than 64 for which 2m−1 and
m are primes. The multiplier was again chosen to obtain maximal period of the generator,
261−2 ≈ 2.3×1018, for this algorithm. This generator is the same as the default one-stream
SPRNG pmlcg generator and was checked to insure that it satisfies the requirements for
maximal period.

The interface routines for this generator are declared as:

Rng Type RngP61Seed( Rng UInt32 i, Rng UInt32 j );
Rng Type RngP61Spawn( Rng Type *x );
int iRngP61( Rng Type *x );
double dRngP61( Rng Type *x );
float fRngP61( Rng Type *x );
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3.5 264 − 210 + 1 Modulus Linear Congruential Generator

Due to the discovery of a pattern for random number generators based on Mersenne primes,
a family of prime modulus generators has been explored that removes this pattern while still
maintaining good efficiency for modular arithmetic. In addition to removing the offending
pattern, these generators also offer a slightly longer period because they use more of the
available 64-bits in the random number state. As discussed in [5], the key to removing the
pattern resulting from the Mersenne prime modular arithmetic is using special primes with
a “+1” instead of “−1” as the last term in the expression composed of powers of two. The
first of these is a prime modulus linear congruential generator provided by the recurrence
relation:

x[n] = a x[n− 1] (mod p) (7)

Where the multiplier, a = 3355703948966806693, is hardwired into the algorithm and p is
the prime, 264 − 210 + 1. The multiplier was again chosen to obtain maximal period of the
generator, 264 − 210 ≈ 1.8× 1019.

The interface routines for this generator are declared as:

Rng Type RngP64 10Seed( Rng UInt32 i, Rng UInt32 j );
Rng Type RngP64 10Spawn( Rng Type *x );
int iRngP64 10( Rng Type *x );
double dRngP64 10( Rng Type *x );
float fRngP64 10( Rng Type *x );

This random number generator suffers from no patterns that we are aware of. We are
currently evaluating its quality using statistical tests. The fact that this generator has a
prime modulus and its period is close to 264 makes it very attractive. This generator also
traps a zeroed state, making it equally useful for debugging.

3.6 262 − 216 + 1 Modulus Linear Congruential Generator

A second prime modulus generator that addresses the pattern appearing for Mersenne
primes is provided by the prime modulus 262 − 216 + 1. This is provided by the recurrence
relation:

x[n] = a x[n− 1] (mod p) (8)

Where the multiplier, a = 3355703948966806692, is hardwired into the algorithm and p,
the prime modulus, is 262 − 216 + 1. The multiplier was again chosen to obtain maximal
period of the generator, 262 − 216 ≈ 4.6× 1018.

The interface routines for this generator are declared as:

Rng Type RngP62 16Seed( Rng UInt32 i, Rng UInt32 j );
Rng Type RngP62 16Spawn( Rng Type *x );
int iRngP62 16( Rng Type *x );
double dRngP62 16( Rng Type *x );
float fRngP62 16( Rng Type *x );

This random number generator suffers from no patterns that we are aware of and we are
currently evaluating its quality using statistical tests.
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4 The Cryptographic Hash Function

We use a cryptographic hash function to construct an initial random number state from a
pair of integers, or from a parent random number state for a child particle. Block encryption
functions are perfectly good for this, themselves providing random numbers of good quality
that are uncorrelated with linear congruential recurrence relations. The encryption key
provides a means for the user to easily create a different random instance of the problem
run, affecting the starting values for all of the particles in the application. The current crop
of block encryption functions operating on 64 bits match our choice of a 64-bit unsigned
integer for random number state quite nicely.

The fact that an encryption algorithm is reversible is not essential, but does assure
that the hash function provides a random, one-to-one, shuffle of the random number states
produced by the generator. This property is guaranteed in the case of the 64-bit linear
congruential generator, where the random number state is a full 64-bit value. Output
collisions can occur in the other generators that do not fully use all possible 64-bit values,
but the probability of such collisions is low.

Any block encryption algorithm of sufficient quality will suffice as our random hash
function for random number state generation. We have chosen the encryption algorithm
IDEA [6] [7] because of its efficient portable implementation on general purpose computers.
The IDEA encryption algorithm is comprised of 8 rounds of a Feistel network, mixing the
operations of three 16-bit wide algebraic groups to scramble the result. We have found
that two rounds of IDEA produces a suitably random output from its input, and that four
rounds would offer an adequate safety margin against correlations being detectable between
parent and child random number states produced by the hash function. The full 8 rounds
of IDEA are available for the truly paranoid Monte Carlo practitioner. The user can adjust
the number of rounds of IDEA used, in response to performance needs, in the event that
the costs of random number state generation become significant. The number of rounds of
IDEA used can be adjusted from 1, to the full 8 rounds, with 4 rounds being the default.

The IDEA encryption algorithm employs a key of 128 bits. A default key is provided.
This key was randomly chosen using dice. The subroutine that sets the IDEA key in our
library takes two 32-bit integers provided as arguments by the user and constructs the
128-bit IDEA key by exclusive or’ing this 64 bits with the upper and lower 64 bits of the
default key. It is very difficult, if not impossible, for the user to generate a bad choice for
the encryption key. The default encryption key is the same as the one generated if the user
passes zeros to RngSetKey.

The functions to control the properties of the hash function are:

void RngSetKey( Rng UInt32 k1, Rng UInt32 k2 )
void RngSetKeyRounds( int n )

Here, Rng UInt32 is a 32-bit unsigned integer and is defined in the header file rng.h. The
RngSetKey() and RngSetKeyRounds() functions are used for all of the random number
generators provided. The RngSetKeyRounds() function sets the number of rounds of IDEA
used in the hash function, silently enforcing the range 1 through 8.

RngSetKeyRounds() and RngSetKey() may be called in any order, but must, if used,
be called before the other RNG routines are called. RngSetKeyRounds() does not have to
be called, in which case the default value for the number of rounds is 4. The full IDEA
encryption algorithm uses 8 rounds, but our tests have shown that changing a single bit
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avalanches with good randomness to all of the output bits in just two rounds. Since this was
an empirical test, we added two more rounds to the default for a safety margin. Setting the
number of rounds higher than 4 will slow down the process of seed generation, but should
result in less correlation between the input and output. Setting the number of rounds to
1 produces clear evidence of correlations, but may be sufficiently random for applications
where the speed of seed generation is paramount. Generally, the code developer should not
expose control of the number of rounds to the user, who might easily set it too low without
carefully checking statistical properties of application results.

5 Packing and Unpacking RNG State

When saving and restoring a RNG state to a data file it may be important for the application
to maintain portability in a binary file format. The byte ordering of the Rng Type depends
upon the details of the host architecture, so we provide routines to pack and unpack the
Rng Type in a given portable2 byte order. This character array of 8 unsigned bytes can
be used to implement machine independent random number state in binary files, assuming
that other tools are used to provide machine independent binary formats for the other C
types used in the application. The routines to pack and unpack a Rng Type to and from
an unsigned char array of length 8 are, RngPack() and RngUnpack(), respectively:

void RngPack( Rng Type r, unsigned char *a );
Rng Type RngUnpack( unsigned char *a );

The routine RngPack(r, a) takes a Rng Type as its first argument, r, storing the 64-bit
value in the unsigned char array (of length 8 bytes) referred to by its second argument,
a. The routine RngUnpack(a) takes the 64-bit value stored in the unsigned char array (of
length 8 bytes) referred to by the pointer, a, and returns the corresponding Rng Type.

6 A Note on Mixing Generators

All of the random number generators currently implemented in the RNG library use the
type Rng Type, a 64-bit unsigned object, to implement the random number state. Each
generator, however, spans its own range of values governed by the properties of its recurrence
relation and any constraints on the starting value used.

The 64-bit lcg described in Section 3.1 spans all possible values of the 64-bit Rng Type,
zero included. The 48-bit lcg of Section 3.2 uses only 48 bits. The state, in this case, spans
the range [0,248). The 48-bit CRI compatible LCG of Section 3.3 uses only 48 bits and the
state, in this case, must be odd. The prime modulus generators, with modulus P, produce
state, x, which spans the range 1 ≤ x < P .

It is important that one does not mix generators for a given random number stream,
for example initializing a Rng Type with the 64-bit generator, and using one of the other
generators to produce random values using this random number state. Results of such
mixing between generators may be unpredictable.

2The byte order used is little endian, that is, least significant byte first. This is a property of the
implementation, and not the RNG library specification.
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7 Thread Safety and the RNG Package

There are two static values in the RNG package that one must be aware of when writing
thread safe code. These values are both associated with the cryptographic hash function.
The first is the number of rounds which can be modified using RngSetKeyRounds(). The
second is the encryption key which can be modified using RngSetKey(). Both of these
functions should be called (if desired) at the startup of a parallel program, before threads
are created. If this philosophy is adhered to the RNG package is thread safe.

8 make Interface

The RNG library is distributed as a UNIX tar image containing all of the the source code
needed to build the library and documentation. In the top level directory, rng, make has
the following useful targets:

make Creates Lib/rng.h and Lib/librng.a.

make test Runs the regression and performance tests.

make clean Cleans up object files.

make clobber Deletes everything built with make.

make tar Creates a tar file name ../rng.tar from the rng directory.

make doc Creates a dvi version of this document in the Doc directory.

make ps Creates a postscript version of this document.

The document building commands are included in order to make the current version of
this document easily available to anyone receiving a copy of the library. One can copy
the library, header, and processed document files to an appropriate system directory as
required.

9 Including and Linking to RNG

The user must include the header file rng.h and link in the archive file librng.a to use the
RNG library. The “-I” compiler flag can be used to tell the compiler where to locate the
header file, for instance -I/usr/apps/include on Livermore Computing systems. Similarly,
the “-L” flag can be used to tell the loader where to find the library in response the -lrng flag,
for instance -L/usr/apps/lib on Livermore Computing systems. The Examples directory
contains several programs that demonstrate the use of the RNG library. A README and
a Makefile contain instructions for building the example programs.

10 Fortran Interface

There are numerous Monte Carlo transport codes written in Fortran that are sorely in need
of an upgrade with respect to random number generation. This becomes a critical issue as

11



the limits of parallel computing are extended for Monte Carlo applications. To satisfy this
need, we have supplied a Fortran interface to the RNG library.

The key obstacle to providing a Fortran interface is the problem of supporting a 64 bit
integral type to store the random number state. Typical Fortran compilers only support a
32 bit integer. We resolve this by defining the random number state to be an array of two
32 bit integers in the Fortran interface.

The subroutines that set the number of rounds and the encryption key are defined as:

SUBROUTINE RNGSETKEY( INTEGER K1, INTEGER K2 )
SUBROUTINE RNGSETKEYROUNDS( INTEGER N )

The functions and subroutines that support a particular generator are defined as:

SUBROUTINE RNGXSEED I32( INTEGER ISR(2), INTEGER I, INTEGER J )
SUBROUTINE RNGXSPAWN I32( INTEGER ISR(2), INTEGER ISA(2) )
INTEGER FUNCTION IRNGX I32( INTEGER ISA(2) )
DOUBLE PRECISION FUNCTION DRNGX I32( INTEGER ISA(2) )
REAL FUNCTION FRNGX I32( INTEGER ISA(2) )

The token X is one of, 64, P61, P64 10 and P62 16 as is the case for the C interface.
The argument ISR is for the result , passed by reference as is customary for Fortran. The
argument ISA is for the argument , passed by reference and for which the random number
subroutines and functions produce a side effect.

11 Testing of the RNG Library

In this section we discuss some of the testing done, both theoretical and experimental, on the
RNG library routines. First, number theory can be used to demonstrate that the algorithms
in the RNG library have maximal period (see discussion regarding each algorithm) and to
limit the choice for the multipliers (e.g., the potency test as described in [8]). Further checks
of the “goodness” of a pseudo random number generator must be done experimentally.
Extensive testing has been performed on the 64-bit linear congruential generator of section
3.1, on the 61-bit prime modulus linear congruential generator of section 3.4, and on the
48-bit modulus linear congruential generator of section 3.2 by the developers of SPRNG [1]
library. We have duplicated the constants used in the SPRNG library for these generators in
order to leverage their testing efforts. To insure that we duplicated the SPRNG arithmetic,
we seeded the RNG routines and the equivalent SPRNG routines with the same values 3,
and compared their results for a large number of advances on several different architectures
(see Table 1).

The RNG library was also compared to Mathematica calculations for a large number
of advances in order to check the accuracy of our implementation of modular arithmetic.
Furthermore, on the IRIX64 machine listed in Table 1 the RNG library was tested with 1012

advances to insure that the values returned by the iRng(), dRng() and fRng() routines are
within the specified limits. A more satisfying test of the returned value was done by seeding
a RNG state with the value that when advanced once produces the maximum (minimum)
value allowed by the generator. The iRng(), dRng() and fRng() routines also passed this
last test on the platforms listed in Table 1.

3Since both the RNG and the SPRNG libraries hash the seed, the seeding was actually done by circum-
venting the normal seeding routines.
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OS OSF1 IRIX64 SunOS AIX HP-UX Linux
Processor DEC SGI sparc IBM PA- AMD

alpha R10000 SUNW PPC RISC K-6
(EV56) 604e II

Clock Speed (MHz) 440 185 250 332 180 333
iRng64 (MRS) 33.15 8.43 3.99 20.62 3.03 9.77
dRng64 (MRS) 18.25 4.86 3.09 10.99 0.64 2.56
iRngP61 (MRS) 7.03 0.99 1.02 2.60 1.10 1.80
dRngP61 (MRS) 7.68 1.01 1.04 3.26 0.48 1.60
nrand48 (MRS) 2.33 5.43 0.69 4.50 0.76 1.51
erand48 (MRS) 2.45 4.29 0.63 3.05 0.64 1.30
SPRNG/ilcg64 (MRS) 10.89 10.53 1.33 1.45 1.85 0.82
SPRNG/dlcg64 (MRS) 7.58 7.19 1.51 1.35 2.13 1.03
SPRNG/ipmlcg61 (MRS) 5.59 2.37 0.36 0.37 0.61 1.36
SPRNG/dpmlcg61 (MRS) 4.41 2.22 0.35 0.36 0.56 1.07

Table 1: List of operating systems (OS) and processors that the RNG library was tested
on and some timing information. The rate is quoted as Millions of Randoms per Second
(MRS). The rows labeled by nrand48 and erand48 are the measured performance of the
system provided generators, for comparison purposes. The rows labeled by SPRNG are the
measured performance of the named generators from the SPRNG library for comparison
purposes.

It is important that one run these tests on any new platform port in order to defend
against any problems that crop up due to compiler differences. One can run the command
make test in the build directory in order to accomplish this. This command will run the
random number generators in the library to insure that they produce the correct state as
compared against built-in tables that record past behavior. After this check, the approxi-
mate timings of the iRng(), dRng() and fRng() routines are reported in Million Randoms
per Second (MRS). Finally, the generators are seeded with the values that produce, on the
next call, the minimum and maximum values for the iRng(), dRng() and fRng() routines.
These routines are called and the returned values are printed to standard output. The max-
imum double and float values should be the same as those printed to standard output by
the program one-eps.c in the Test sub-directory. To compile and run this program enter
the command make one-eps in the Test sub-directory. Note, in most cases the maximum
double value should match that produced by one-eps.c; however, for some generators the
value is slightly less due to the fact that there is no double value which when multiplied by
the maximum value of that generator produces the nearest-to-one value that is less than
one.

We are currently engaged in extensive statistical testing of the new prime modulus
generators we have introduced in the RNG library, comparing them to those derived from
the SPRNG package, and will report on the results of this testing in a separate paper.
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